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Abstract: Although the benefits of regular exercise on cardiovascular risk factors are well established
for people with type 1 diabetes (T1D), glycemic control remains a challenge during exercise.
Carbohydrate consumption to fuel the exercise bout and/or for hypoglycemia prevention is an
important cornerstone to maintain performance and avoid hypoglycemia. The main strategies
pertinent to carbohydrate supplementation in the context of exercise cover three aspects: the
amount of carbohydrates ingested (i.e., quantity in relation to demands to fuel exercise and avoid
hypoglycemia), the timing of the intake (before, during and after the exercise, as well as circadian
factors), and the quality of the carbohydrates (encompassing differing carbohydrate types, as well
as the context within a meal and the associated macronutrients). The aim of this review is to
comprehensively summarize the literature on carbohydrate intake in the context of exercise in people
with T1D.

Keywords: type 1 diabetes; carbohydrates; insulin; exercise; glycogen; hypoglycemia; glucose;
fructose; hormones; glycemic index

1. Introduction

People with type 1 diabetes (T1D) are recommended to engage in regular physical exercise for a
variety of health and fitness reasons [1]. It has been shown that physical activity reduces cardiovascular
risk, through improved modifiable risk factors such as hypertension or dyslipidemia, and has a
beneficial impact on additional factors such as body composition and psychological wellbeing in
patients with T1D [2,3]. However, the effects of exercise on glycemic control are complex, and, despite
significant advances in insulins and supportive technology, exercise remains a challenge for this
population [4–7]. Indeed, fear of hypoglycemia remains the most important barrier to exercise for many
individuals living with T1D [4,6,8]. Current guidelines to prevent exercise-induced hypoglycemia
suggest insulin dose adaptation and/or ingestion of additional carbohydrates in the context of the
exercise bout [9–11]. While the authors acknowledge that insulin adaptation and carbohydrate
consumption are intertwined when it comes to managing glycemia during exercise, this review will
focus on the literature pertaining to carbohydrate intake.

Physical exercise is a complex metabolic stressor with many intra- and inter-individual variables
influencing glycemic response. Therefore, for the individual with T1D, carbohydrate consumption to
prevent hypoglycemia and/or to fuel the exercise bout is a challenge encompassing a variety of aspects
(i.e., the amount of carbohydrates, the issue of timing, and the type of carbohydrate). The strategies
used to manage glycemia during exercise require knowledge of pre-exercise blood glucose, the amount
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of “insulin on board”, and the expected blood glucose response depending on the type and volume of
the planned exercise bout. To complicate matters, the type of carbohydrate, and the context in which it
is consumed (e.g., with other macronutrients such as fats or proteins), can have an additional impact
on glycemic response, and therefore insulin requirements, in the individual with T1D. Although the
primary motivator for carbohydrate consumption before, during and after exercise for people with
T1D is the avoidance of hypoglycemia, fuel provision for optimal performance, weight management
and long-term glycemic control need to be considered. Additionally, from a psychological point of
view, it is important that a level of food enjoyment is maintained, to limit the risk of eating disorders or
food fixation, of which people with T1D are at greater risk than the general population [12,13].

The aim of this review is to summarize the literature, focusing on three central aspects, namely
quantity, timing and type of carbohydrate intake, in the context of exercise in people with T1D. We will
also discuss the impact of additional factors on glycemia and how the type of carbohydrate may be
manipulated to manage blood glucose during and after exercise in people with T1D.

2. Physiology of Exercise in Type 1 Diabetes

Blood glucose responses to exercise vary considerably both between and within individuals with
T1D, depending on numerous factors including (but not limited to) the type, duration and intensity of
exercise; level of circulating exogenous insulin during and after exercise; and pre-exercise blood glucose
concentration. Exercise is generally classified as ‘aerobic’ (longer activities of moderate intensity) or
‘anaerobic’ (short, very intense activities), depending on intensity as well as the predominant energy
systems used, although many forms of exercise use a combination of the two. It is important that the
reader understands how hormonal responses differ with the intensity of the exercise bout and the
consequential effect on carbohydrate requirements for the individual with T1D.

In healthy individuals without T1D, tight control mechanisms exist so that glucose uptake
into peripheral tissues is precisely matched by the rate of hepatic glucose production to maintain
euglycemia [14]. During a bout of moderate-intensity aerobic exercise (50–80%

.
VO2max) in individuals

without T1D, several counter-regulatory mechanisms are activated in a stepwise and hierarchical fashion
to maintain euglycemia [15,16]. First, endogenous insulin secretion from the β-cells is suppressed to
below fasting levels via sympathetic innervation of the islets of Langerhans [15]. The reduced insulin
concentration enables the secretion of glucagon from the pancreatic α-cells into the portal vein, which
stimulates hepatic glucose output to match the rate of glucose uptake into the skeletal muscles [16].
The decrease in insulin also sensitizes the liver to glucagon, which causes a rapid rise in cyclic
AMP to stimulate glycogenolysis and gluconeogenesis [17–19]. As the exercise bout progresses, other
counter-regulatory hormones are released, including catecholamines, growth hormone, aldosterone and
cortisol, which stimulate hepatic glucose production and adipose tissue lipolysis, as well as inhibiting
skeletal muscle glucose uptake, in order to protect against hypoglycemia [20,21]. As exercise intensity
increases above 60% of

.
VO2max, lipid oxidation decreases, particularly in untrained individuals,

and there is increased reliance on carbohydrates for energy provision [22].
In people with T1D, the glucoregulatory response to moderate-intensity exercise is impaired,

mainly because they do not secret physiological amounts of endogenous insulin. Even the use of
the latest modern therapeutic approaches (e.g., ultrafast-acting insulin analogues, insulin pumps,
smart algorithms, hybrid closed-loop systems) cannot match the precise physiological metabolic
regulation in those without T1D [23,24]. As a consequence, circulating systemic insulin concentrations
lead to relative hyperinsulinemia during and after exercise in people with T1D. This is compounded
by a dysregulated α-cell response, leading to lower glucagon levels and, hence, reduced hepatic
glucose production [25]. High circulating insulin concentrations and skeletal muscle contraction
exert additive effects on GLUT-4 translocation, resulting in heightened peripheral glucose uptake
and decline in glycemia [26]. Exercise-induced increases in muscle perfusion [27] further increase
insulin-mediated glucose disposal and, consequently, induce a drop in glycemia. Additional metabolic
effects of higher insulin concentrations include the suppression of adipose tissue lipolysis and, therefore,
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fat oxidation in the skeletal muscle [28]. The unfavorable combination of changes in fuel selection and
oxidation alongside the imbalance between peripheral glucose disposal and hepatic glucose production
eventually results in an increased risk of hypoglycemia.

While mild- to moderate-intensity exercise generally increases the risk of hypoglycemia, intense
exercise can have inverse effects [29]. The stimulation of counter-regulatory hormones may increase
blood glucose levels, potentially leading to hyperglycemia [30–32]. In these situations, individuals with
T1D may opt to correct their blood glucose with an insulin bolus after exercise [31]; however, care must
be taken to avoid overcorrecting, as this can lead to severe post-exercise or nocturnal hypoglycemia.
Conversely, in the absence of insulin (e.g., where the individual has removed their insulin pump or
when insulin delivery is blocked or skipped), any level of exercise can lead to hyperglycemia and ketone
formation. Many forms of physical activity, such as sports or spontaneous play, consist of intermittent
periods of both moderate-intensity activity and short bursts of high-intensity activity. Circuit-based
exercise has been shown to lead to a reduced drop in glycemia compared to moderate-intensity aerobic
exercise upon basal insulin suspension at the start of exercise [33]. These forms of activity may attenuate
the drop and reduce dependency on exogenous carbohydrates to maintain euglycemia [16].

It is clear that the intensity and duration of the exercise bout has important effects on the glucose
response in the individual with T1D and, therefore, the strategy to manage glycemia. Depending on
the specification of the individual insulin therapy, both basal or pre-meal bolus adaptations are possible
strategies to prevent hypoglycemia during moderate-intensity exercise [33–36]. Adaptation of basal
insulin is inherently easier for patients using insulin pumps or hybrid closed-loop systems, who are
able to set temporary changes to their basal insulin and/or temporary changes to the glycemic target
adapted to the exercise bout. A number of studies [33,34,37], as well as personal clinical experience,
show that adaptation of the user’s insulin pump may be an important intervention to reduce the risk of
hypoglycemia in the context of exercise. However, the exact mode of adaptation may be difficult and
the underlying pharmacodynamics and pharmacokinetic changes are not entirely understood [38,39].
Additionally, using closed-loop insulin delivery may be insufficient to prevent hypoglycemia during
exercise, whereas combining closed-loop insulin with additional snacking of 15–30 g of carbohydrate
before exercise prevented all cases of hypoglycemia in a recent study [40]. For patients using multiple
daily injections with modern ultra-long-acting insulin analogues, adaptation of basal insulin may be
even more difficult or utterly impossible. Therefore, while further discussion of insulin adjustment
strategies in the exercise context is beyond the scope of this review, it can be stated that the adequate
supplementation with carbohydrates may offer a complementary approach with the potential advantage
of being more flexible.

3. Quantity of Carbohydrate Supplementation in the Context of Exercise in Type 1 Diabetes

There are two important factors regarding the quantity of carbohydrates required in the context of
exercise to consider: glycemic management and fueling the exercise bout. In essence, the quantity of
recommended carbohydrates before, during and after a bout will depend on the blood glucose concentration,
the type and intensity of exercise being performed, and the level of circulating insulin [9]. People with
T1D are recommended to aim to start the bout of exercise with a stable blood glucose concentration
between 7 and 14 mmol/L when ketone levels are low in blood (i.e., <1.5 mmol/L) or free/trace urine [9,11].
Before starting exercise, the individual with T1D is recommended to ingest 10–20 g glucose if glucose levels
are <5.0 mmol/L and 10 g of carbohydrate if between 5.0 and 6.9 mmol/L [9].

The latest consensus guideline paper [9] contains a table summarizing the recommended quantity
of carbohydrates to consume during exercise, depending on the duration of the exercise bout, blood
glucose value and the amount of insulin on board (high or low). During a bout of moderate-intensity
exercise lasting up to 30 min, in states of stable euglycemia, only a relatively small amount (10–20 g/h)
of carbohydrate may be needed [9]. With increasing duration and intensity, additional amounts
of carbohydrate are recommended, with up to 75–90 g/h when exercising for over an hour [9].
Grimm, et al. [41] compared the effects of adjusting carbohydrate intake in the context of exercise with
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or without insulin adjustment on the risk of hypoglycemia. During this study, the authors developed
a table to guide carbohydrate requirements, depending on exercise intensity and duration (Table 1).
Their study showed that it was possible to prevent almost all hypoglycemia during exercise, provided
adequate carbohydrate was consumed. With the advent of continuous glucose monitoring technology,
researchers have been able to integrate additional information to help decision making. For example,
Riddell and colleagues [42] suggested the use of an algorithm (decision tree) based on glucose level and
rate of change according to data derived from continuous glucose monitors to estimate carbohydrate
requirements to maintain stable glycemia during exercise. Their algorithm suggested that if glucose
was below 7.0 mmol/L, action was required by the individual, whereby 16–20 g was ingested depending
on the value and rate of change.

Table 1. Amount of carbohydrates required to prevent hypoglycemia during exercises of different
durations and intensities in people with type 1 diabetes. Adapted from Grimm, Ybarra, Berne, Muchnick
and Golay [41].

Intensity <20 min 20–60 min >60 min

<60% HRmax 0–10 g 10–20 g 15–35 g/h
60%–75% HRmax 10–20 g 20–60 g 20–100 g/h

>75% HRmax 20–30 g 30–100 g 30–150 g/h

HRmax = heart rate maximum.

These studies highlight the importance of adjusting insulin dosage to avoid the need to
consume additional carbohydrates at the upper range of Table 1 [41]. Depending on the energy
consumed throughout exercise, such carbohydrate intake may induce unintended weight gain.
When larger amounts of carbohydrate are required to fuel prolonged endurance exercise, the maximum
carbohydrate gut absorption capacity (1.2–1.7 g/min for glucose [43]) will become a limiting factor.
In long-duration and high-intensity exercise situations, this may not only lead to an increased
probability of gastrointestinal side effects, but also to a relative energy deficit, with an associated risk
of hypoglycemia in those with T1D. In these situations, additional forms of carbohydrates other than
glucose, with differing a mode of uptake and kinetics, may be beneficial (see Section 5 for more details).

4. Timing of Carbohydrate Intake in the Context of Exercise

While the issue of quantity is certainly of central importance, adequate handling of carbohydrate
ingestion additionally encompasses aspects of timing. This section will discuss factors relating to the
timing of a meal containing carbohydrate in the context of an exercise bout, and also factors that can
impact the timing of the exercise itself (e.g., circadian rhythm).

Even with the most rapid-acting insulins, insulin is still likely to be active during exercise if the
time between the meal and exercise is less than 2–3 h [23]. For this reason, many people with T1D
choose to exercise in the morning in the fasted state. Yamanouchi, et al. [44] showed that walking after
breakfast significantly decreased glycemia compared to walking before breakfast. However, when
wanting to perform exercise in the post-absorptive state, which is often the most practical, due to
the busy schedules of many active people, it may be wise to consume additional carbohydrates to
account for the insulin on board [41,45]. To examine the effects of pre-exercise carbohydrate timing,
West, Stephens, Bain, Kilduff, Luzio, Still and Bracken [45] compared glycemia during exercise 30, 60,
90 and 120 min after ingestion of a meal containing 75 g carbohydrate with a reduced insulin dose.
While the insulin concentrations were comparable between the conditions, the risk of hypoglycemia
was lowest in the 30 min condition. These results suggested that people with T1D may experience a
reduced risk of hypoglycemia and higher lipid oxidation rates during exercise if the pre-exercise rest
period is restricted to 30 min following the ingestion of low glycemic index carbohydrates and reduced
insulin dose.



Nutrients 2019, 11, 3017 5 of 21

While awareness of hypoglycemia during exercise is comparably high in patients as well as health
care providers, the issue of post-exercise, late-onset hypoglycemia may sometimes not be attributed the
adequate importance [46,47]. Depending on the intensity and duration of an exercise bout, the increased
risk of hypoglycemia can last for more than 30 h [46]. There are two main mechanisms for the increased
risk of late onset hypoglycemia following exercise. First, liver and muscle glycogen stores must be
restored after the exercise bout via circulating plasma glucose. Secondly, increased insulin sensitivity
may persist for hours and even days, according to the duration and intensity of the exercise performed.
The increased insulin sensitivity and continued extraction of glucose from the circulation may be
related to increased glycogen synthase activity to replenish glycogen stores [48,49]. Enhanced glucose
transporter 4 (GLUT 4) translocation and muscle microvascular perfusion may also persist after exercise,
and are important for the ongoing changes in glucose uptake [50,51]. Special care may be required
to prevent post-exercise hypoglycemia following afternoon or evening exercise, because there is a
greater risk of nocturnal hypoglycemia [47,52–54]. Glucose requirements following moderate-intensity
exercise performed late in the day exhibit a biphasic pattern, with increases occurring both immediately
post and 7–11 h post exercise [55].

Nocturnal hypoglycemia is often particularly challenging, with over 50% of severe hypoglycemia
episodes occurring during sleep [56,57]. Of note, exercise itself [58], as well as sleep [59], have been
shown to impair awareness to hypoglycemia by blunting counter-regulatory responses. The risk of
nocturnal hypoglycemia following 45 min of moderate-intensity exercise performed in the afternoon
has been suggested to be as high as 30–40% [47,53,54]. Nutritional strategies to reduce the risk of
nocturnal hypoglycemia include ingestion of a bedtime snack [60]. A bedtime snack containing
carbohydrate and protein is regularly suggested in clinical practice and frequently used by patients;
however, the optimal composition of this snack is still unclear. Whole milk and slowly absorbed snacks
such as chocolate and fruit have been shown to reduce the risk of late-onset hypoglycemia [61] (see
Section 5 for more details).

Influence of Circadian Variation in Glucose Kinetics and therefore Carbohydrate Requirements

The glycemic response to exercise and, therefore, carbohydrate requirements to prevent
hypoglycemia can also be influenced by the time of day. For example, afternoon resistance exercise in
people with T1D has been shown lead to declines in glycemia [62,63], whereas an almost identical
resistance exercise protocol performed in the morning under fasting conditions resulted in either
no change [64] or a mean increase [65] in blood glucose concentration. This was supported by
a repeated measures design study comparing morning and afternoon resistance exercise, where
the morning (fasting) exercise led to an increasing trend in blood glucose, while blood glucose
declined during afternoon exercise [66]. There have been similar findings with fasted aerobic exercise.
Ruegemer, et al. [67] observed declines in blood glucose following 30 min of aerobic exercise in the
afternoon, with the same participants experiencing an increase in blood glucose when performed in
the morning. Similarly, Scott, et al. [68] observed that participants performing both moderate aerobic
exercise and high-intensity interval training (HIIT) in the fasted state did not experience declines
in blood glucose during either exercise protocol. These findings contrast with the declines in blood
glucose found during later day (fed state) aerobic exercise [33,54,62,69–72] and HIIT [33,54,69–71].

There are a number of possible explanations for the phenomenon observed with fasted exercise
in the morning. The first is that lower circulating insulin during fasted exercise decreases the
suppression of hepatic glycogenolysis, and consequently increases blood glucose during exercise.
Secondly, counter-regulatory hormones such as growth hormone and cortisol are higher in the morning,
resulting in a rise in blood glucose [73–75]. Although the theories behind the greater glucose stability
in the morning remain unconfirmed, it can still be suggested that those struggling with hypoglycemia
during exercise, and/or those trying to avoid additional carbohydrates to aid weight management,
may have greater success with early morning/fasted exercise than they would with exercise later in
the day.
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5. Quality of the Ingested Carbohydrate and the Influence of other Macronutrients/Fiber

Carbohydrates come in various forms, which influence their metabolic fate and glycemic
impact [76]. Monosaccharides, also called ‘simple sugars’, are the basic units of carbohydrate
that cannot be hydrolyzed to simpler chemical compounds. Examples of monosaccharides include
glucose, fructose and galactose, with glucose being the primary cellular fuel source in almost all human
tissues. Monosaccharides are the building blocks of disaccharides (e.g., lactose, maltose, sucrose,
isomaltulose) and polysaccharides (e.g., glycogen, cellulose, amylose, and amylopectin). The different
characteristics of carbohydrates influence the rate of digestion, intestinal absorption and hepatic
metabolism, which are key determinants of their glycemic impact and, hence, the rate of delivery to
the skeletal muscle. Interestingly, depending on the type of carbohydrate, different and even partly
insulin-independent metabolic pathways are used [77].

Although carbohydrates are the main macronutrient affecting glycemia, the consumption of a
mixed meal containing varying quantities of fat, protein and fiber may further modify the glycemic
response by influencing the absorption rate of carbohydrates, intestinal and pancreatic hormones (e.g.,
glucagon) and peripheral insulin sensitivity [78–82]. Various studies [78] showed that meals containing
high amounts of protein or fat increased and delayed the glycemic response compared to a control
meal with an equivalent carbohydrate content [78,83–85]. Thus, the ADA [86] guidelines suggest that
people with T1D make insulin adjustments to compensate for the glycemic effects of high-protein or
high-fat meals.

5.1. Glycemic Impact of Carbohydrates

The glycemic impact of carbohydrates is determined by two aspects. First, by its chemical structure
and second, by other food components consumed simultaneously (e.g., fiber, protein/amino acids,
fat). The glycemic response of carbohydrates is often quantified by the glycemic index (GI), which
ranks them on a scale from 0 to 100 according to the extent to which they raise blood glucose [87].
Foods are considered to have a low GI with an index less than 55, mid GI if the index is 56–69 and high
GI if more than 70. Glucose is assigned the maximal GI of 100, which is why it is the most suitable
carbohydrate for treating hypoglycemia. A handful studies have investigated the effects of different GI
carbohydrates in people with T1D under resting conditions [88–90] and in the context of an exercise
bout [91–95]. For example, one crossover study in eight individuals with T1D compared the ingestion
of 75 g of either low GI carbohydrate isomaltulose (GI = 32) or dextrose (GI = 92) 2 h before a 45 min
treadmill run [91]. The authors [91] found that blood glucose increased half as much in the isomaltulose
trial compared to the dextrose condition during the rest period and remained 21% lower for 3 h of
recovery after exercise. During the later stages of the exercise bout there was lower carbohydrate and
greater lipid oxidation rate in the isomaltulose trial. The low GI carbohydrate improved the blood
glucose response and supported the continued use of lipids compared to high GI dextrose.

Low GI snacks consumed before bedtime have also been shown to reduce the risk of nocturnal
hypoglycemia following exercise, due to delayed and enduring glycemic effects and lower rapid insulin
requirements [93]. Thus, based on the limited number of studies, low GI meals appear to be more
effective at reducing the risk of hyperglycemia and optimizing fuel utilization throughout exercise,
while offering protection from hypoglycemia for around 8 h post exercise. However, rapid-acting
carbohydrates will always be an adequate choice to rapidly correct low blood glucose values.

5.2. Fructose and Other Alternatives to Glucose

There may be potential for other forms of carbohydrates, such as galactose and fructose, to provide
alternatives to glucose for meeting energy requirements, independently of insulin, in people with T1D.
These sugars are metabolized very differently: glucose is preferentially metabolized by tissues such
as the skeletal muscle and brain [96,97], whereas fructose and galactose are primarily metabolized in
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the liver [98–100]. Although there is currently no data on galactose and T1D, the results from studies
using fructose as a means to attenuate the drop in glycemia during exercise are promising [101,102].

Fructose is a monosaccharide with the same molecular formula as glucose (C6H12O6) but a
different structure: the main difference being the arrangement of –OH and =O groups, resulting in
a ketogroup at position C2 in fructose. For this reason, its metabolism differs markedly compared
to glucose. Fructose is primarily absorbed across the apical membrane of the intestinal enterocytes
by glucose transporter 5 (GLUT5), whereas glucose is absorbed by sodium–glucose cotransporter 1
(SGLT1) [103]. After intestinal absorption, fructose is first metabolized in the splanchnic area (intestine
and liver) whereas glucose passes directly into the systemic circulation [98]. Therefore, following
fructose ingestion, plasma fructose concentration remains low (<0.5 mmol/L) [104], supporting its low
GI of 18. As there is no physiological feedback on fructokinase, all intracellular fructose is converted
to triose-phosphate, which is then metabolized to pyruvate, lactate, glucose, glycogen and fatty
acids [104,105].

Pre-exercise fructose intake may provide particular metabolic benefits to exercise and T1D, due to
its attenuated glycemic effect and partial conversion to lactate and lipids (Figure 1) which can be
used as alternative energy substrates by the muscle. The steady supply of slow release glucose from
the liver following fructose ingestion ensures a more enduring glycemic effect. This may contribute
towards maintaining glycemic stability during exercise while optimizing fat utilization [106]. In a study
evaluating glucose–fructose co-ingestion compared to glucose alone at our institution, this metabolic
trend of higher fat oxidation was confirmed [101]. Furthermore, unpublished data from our group has
shown that ingestion of 20 g of fructose 30 min before an hour of cycling at 50%

.
VO2max reduced the

risk of hypoglycemia compared to water alone in patients using ultra-long acting insulin analogues
who were, therefore, unable to adjust the basal insulin dose [102]. These data suggest that fructose may
offer a simple alternative strategy to optimize glucose management during exercise in people with
T1D, translating in higher fat oxidation and glycogen sparing, as well as a lower risk of hypoglycemia.
Future research is needed to directly compare fructose and glucose, the effects of different exercise
modalities, and the time of day that the exercise is performed.

As a cautionary note, ingestion of large amounts of fructose alone as a single dose (>50 g, but as
low as 25 g in some individuals) may cause gastrointestinal distress [107]. Therefore, this approach
should be evaluated on an individual basis, considering the spacing of doses or combination with
glucose [101]. It is also important to acknowledge the potential dangers of chronic high-fructose
consumption in the context of hypercaloric feeding and sedentary behavior [108–110]. Chronically high
fructose consumption in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type
2 diabetes and high blood pressure [111]. The evidence is less convincing in humans, but has been
shown to lead to dyslipidemia and to impair hepatic insulin sensitivity [112]. However, this evidence
derives from sedentary individuals, while studies in athletes have shown contrasting results [99].
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fructose is converted to primary energy substrates, such as lactate, glucose and lipids, which can be 
released into the circulation or stored in the liver as glycogen. This allows a supply of energy to 
maintain glycemia without the need for insulin. SGLT2 = sodium–glucose cotransporter 2; GLUT = 
glucose transporter protein. 
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exceed the minimum activity guidelines, which means that some of the available studies provide 
limited use to these individuals and their healthcare providers. Within the literature, there are 
numerous examples of people with T1D undertaking impressive feats of endurance, lasting hours or 
even days, including ultramarathons, Ironman competitions, hiking over multiple days and long-
distance cross-country skiing [113–127]. Such extreme feats of endurance would not be possible 
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wishing to engage in endurance exercise have to base their strategies on nutritional guidelines from 
studies conducted in people without T1D [128–130] and rely on past experience based on trial and 
error [125,131]. For example, our personal experience with professional cyclists with T1D showed 
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Figure 1. Simplified schematic of the main pathways involved in intestinal and hepatic fructose and
glucose absorption.Orally ingested fructose is absorbed via different intestinal transport proteins to
glucose and then almost completely extracted by the liver, where it is metabolized. In the liver, fructose
is converted to primary energy substrates, such as lactate, glucose and lipids, which can be released
into the circulation or stored in the liver as glycogen. This allows a supply of energy to maintain
glycemia without the need for insulin. SGLT2 = sodium–glucose cotransporter 2; GLUT = glucose
transporter protein.

6. Specific Considerations for Athletes with Type 1 Diabetes

6.1. Prolonged Endurance Exercise: Balancing Energy Requirements with Glycemic Control

It is important to acknowledge that a substantial number of people with T1D wish to greatly exceed
the minimum activity guidelines, which means that some of the available studies provide limited
use to these individuals and their healthcare providers. Within the literature, there are numerous
examples of people with T1D undertaking impressive feats of endurance, lasting hours or even
days, including ultramarathons, Ironman competitions, hiking over multiple days and long-distance
cross-country skiing [113–127]. Such extreme feats of endurance would not be possible without close
glucose monitoring and adjustment to food intake. Besides blood glucose management, there are
multiple factors that the athlete with T1D must take into account to optimize performance and recovery
during competition and key training sessions, including dehydration, electrolyte imbalances, glycogen
depletion, gastrointestinal discomfort, and disturbances in acid-base balance [128].

Due to the complex inter-individual differences and the scarcity of research in this area, no standard
recommendations concerning insulin adjustments and/or quantity of carbohydrate intake during
prolonged endurance exercise exist for the athlete with T1D. In general, individuals with T1D wishing
to engage in endurance exercise have to base their strategies on nutritional guidelines from studies
conducted in people without T1D [128–130] and rely on past experience based on trial and error [125,131].
For example, our personal experience with professional cyclists with T1D showed that the riders
consume a quantity of carbohydrates that is entirely in line with conventional recommendations during
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races (up to 90 g/h; see Table 2 for an overview of the carbohydrate quantities usually consumed by
athletes in differing conditions). During prolonged endurance exercise, high carbohydrate intake is
required to maintain the rate of carbohydrate oxidation necessary to sustain the exercise intensity
and avoid glycogen depletion (muscle and liver), as this is a major cause of fatigue (reviewed by
Hearris, et al. [132]). It is again important to emphasize that athletes with T1D need to balance their
carbohydrate requirements with their workload, as well as simultaneously managing their blood
glucose levels. One proposed strategy to combat this is to use a “reverse approach”, whereby a fixed
amount of carbohydrate is consumed corresponding to the duration and intensity of the upcoming
event, and insulin dose is individualized around this [126]. Adolfsson, Mattsson and Jendle [126] found
that, when using such a strategy, glycemia was well maintained during a 90 km cross-country skiing
race in a group of athletes with T1D. However, this reverse approach may not be possible for everyone
and likely requires a lot of pre-planning, with factors such as competition stress or unexpected weather
conditions likely to complicate matters.

Table 2. Guidelines for carbohydrate intake by endurance-trained athletes without type one diabetes
(T1D), adapted from Burke [129], Jeukendrup [130] and the position of the Academy of Nutrition and
Dietetics, Dietitians of Canada, and the American College of Sports Medicine guidelines [128].

Level of Activity Carbohydrate Targets

Light (low intensity or skill-based activities) 3–5 g/kg bodyweight/day
Moderate (approximately 1 h per day) 5—7 g/kg bodyweight/day
High (e.g., 1–3 h moderate to high-intensity exercise) 6–10 g/kg bodyweight/day
Very high (e.g., >4/5 h of moderate to high-intensity exercise) 8–12 g/kg bodyweight/day
Extreme (e.g., elite cycle competition) >12 g/kg bodyweight/day

Note: Nutrition goals for athletes are not static. Many athletes undertake a periodized program in which preparation
for peak performance is achieved using different types of workout over the training calendar. Nutrition support
needs to be periodized, taking the nutritional requirements of daily training sessions into account.

A somewhat untouched topic in T1D research is the risk of relative energy deficiency in
sport or RED-S. This refers to a situation where an athlete has insufficient energy intake relative
to their training load, resulting in adverse health and impaired athletic performance [133,134].
Specific health consequences of RED-S include affected menstrual function, bone health, endocrine,
metabolic, hematological, growth and development, psychological, cardiovascular, gastrointestinal,
and immunological systems. Athletes at particular risk of RED-S are those involved in sports where
high power-to-weight ratio is conducive to performance (e.g., cycling, triathlon, running), in weight
category sports (e.g., boxing, lightweight rowing), and in aesthetic sports (e.g., dancing, gymnastics).
The complexities of balancing glycemia, energy requirements for training, and long-term weight
management may put athletes with T1D at particular risk of RED-S. It is important that the athletes,
their coaches and their healthcare providers are aware of the potential risks of RED-S. Factors relating
to RED-S in athletes with T1D, including training load, calorie intake and ensuring adequate recovery
time alongside glycemic management, are complex and should be the focus of future research.

6.2. The Impact of Competition Stress on Carbohydrate Requirements

In athletes with T1D, additional factors related to glycemia and carbohydrate intake have to be
considered. One aspect which may often be forgotten is the influence of competition stress [135].
This is where the release of stress hormones (glucagon, but also adrenaline and noradrenaline) before
the start of an event [116] leads to a substantial increase in glucose levels. This may result in avoidance
of carbohydrate intake at the start of a race, which, in turn, is associated with an increased risk of
late onset hypoglycemia [136], since athletes may not be taking in enough fuel for the work required.
Competition stress is a somewhat understudied area, as it is very difficult to reproduce in the laboratory
and the effects are very individual. Therefore, a certain amount of trial and error with the guidance of
a medical professional is required to work out a pre-race strategy that works for the individual.
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6.3. Carbohydrate Loading

Carbohydrate loading is a common strategy used by athletes without T1D in the days leading
up to a prolonged endurance event that is generally accepted to increase exercise performance and
capacity in events lasting longer than 90 min [137]. A typical carbohydrate loading regimen is three
days of increased carbohydrate intake between 8–12 g/kg/day, whereby carbohydrate contributes to
70–85% of the total energy intake [128]. In those without T1D, the increased carbohydrate intake is
automatically matched by a greater endogenous insulin secretion to maintain glucose homeostasis.
However, individuals with T1D need to adapt their insulin doses in accordance with the greater
carbohydrate intake, which can be challenging [127,138]. There are very few studies investigating
the benefits of and/or strategies to effectively carbo-load in individuals with T1D. Just over 20 years
ago, McKewen, Rehrer, Cox and Mann [138] conducted a randomized crossover design in seven
trained men with T1D to compare the effects of a 3-week moderate- vs. high-carbohydrate diet on
glycogen stores, glycemic control and performance during a 15 min time trial. The high carbohydrate
diet resulted in worse glucose control and performance during the time trial, leading the authors to
conclude that a high carbohydrate diet prior to exercise is not beneficial, due to worse blood glucose
control. More recently, Mattsson, Jendle and Adolfsson [127] investigated the effects of two days’
carbohydrate loading, followed by a high, intermittent carbohydrate intake during a prolonged 90 km
cross country ski race in 10 people with T1D. In contrast to the findings of McKewen, Rehrer, Cox and
Mann [138], Mattsson, Jendle and Adolfsson [127] reported good glycemic control during the two days
of carbohydrate loading. Mattsson, Jendle and Adolfsson [127] suggest that this was due to the fact that
they gradually increased the basal insulin doses during nights one and two of carbohydrate loading,
and were careful to achieve stable glucose values before the start of the exercise bout. It is likely that
they were also aided by the use of modern insulin preparations, as well as CGM technology, which was
not available during the study by McKewen, Rehrer, Cox and Mann [138]. However, participants in the
study by Mattsson, Jendle and Adolfsson [127] spent ~10% of their time in hypoglycemia, suggesting
that adaptation of insulin was still challenging. In any case, individuals with T1D wishing to try
carbohydrate loading before an athletic event may require more intensive blood glucose monitoring to
avoid any deterioration of glycemia.

It was previously unknown whether people with T1D have poorer glycogen storage, which
would make carbohydrate loading useless. Of note, previous 13C nuclear magnetic resonance
spectroscopy (MRS) studies that measured hepatic glycogen under the physiologic conditions of
mixed meal ingestion showed that poorly controlled individuals with T1D exhibit a defect of net liver
glycogen synthesis that accumulates throughout the day and is most pronounced after the evening
meal [139,140]. Furthermore, these authors observed a higher contribution of gluconeogenesis to
glycogen synthesis in T1D (the so-called indirect glycogen synthesis pathway) compared to subjects
without T1D. Intensification of insulin treatment normalized glycogen storage but not the contribution
of gluconeogenesis to glycogen synthesis [140]. The latter finding supports the idea that even advanced
insulin substitution regimens do not resemble the physiologic insulin secretion pattern, since the
peripheral administration of insulin distorts the portal-to-peripheral insulin gradient, thereby affecting
hepatic glycogen turnover [141]. Our group previously contrasted muscle and liver glycogen content
in well-controlled individuals with T1D and matched controls without T1D using 13C-MRS and
found no significant between group differences [142]. This suggests that, under adequate conditions,
carbohydrate loading may benefit exercise performance and/or capacity in people with T1D.

7. Modifying/Additional Factors

7.1. Influence of Sex Hormones on Fuel Metabolism and Counter-Regulation

Within the T1D and exercise literature, the majority of published studies only include young
healthy males, and those that have included females tend not to recognize the potential sex-related
impact on their outcomes. As previously discussed [143,144], this is an important issue because, based
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on studies conducted in individuals without T1D, there are likely important sex-related differences in
metabolic and neuroendocrine responses during exercise that will influence glycemia and, therefore,
carbohydrate requirements. Sex hormones have important effects on the metabolic and neuroendocrine
responses to exercise (reviewed by [145,146]) that are likely to influence carbohydrate requirements.
In people without T1D, studies have shown clear sex-related differences in fuel metabolism during
fasted exercise between men and premenopausal women [147–150]. During endurance exercise at
the same relative intensity, females have a lower respiratory exchange ratio than men, indicative
of a lower reliance on carbohydrate oxidation for energy provision during exercise [147,148,150].
In females, higher estradiol levels promote lipid oxidation and glycogen sparing, as well as greater
sensitivity to the lipolytic action of catecholamines [151]. These metabolic differences between the
sexes would suggest that men would have greater carbohydrate requirements around exercise than
women. Interestingly, however, the sex-related differences in fuel selection during exercise are reduced
when a carbohydrate load precedes the exercise bout [152]. This is of particular importance to people
with T1D who regularly consume carbohydrate loads before and during exercise.

The female hormones, estrogen and progesterone, fluctuate predictably across the menstrual
cycle in eumenorrhoeic women [153]. Women with T1D have important glycemic variability changes
that are specific to the individual and linked to the phases of the menstrual cycle [154]. Women often
wish to undertake physical activity or compete in sporting events at all stages of their menstrual cycle.
It is therefore important to have an understanding of the hormonal influences on blood glucose and
carbohydrate requirements. Studies have shown that the rate of appearance and disappearance of
glucose during exercise is attenuated by therapeutic increases in circulating estrogen [155–157], or during
the mid-luteal phase of the menstrual cycle, compared to the early follicular phase [148,158,159].
In females with T1D, there is an increased risk of hyperglycemia and decreased insulin sensitivity in
the luteal phase compared to the follicular phase.

7.2. Eating Disorders or Anxiety related to Food

As discussed above, managing glycemia is complex and treatment goals can risk encouraging
perfectionism, which, in turn, can lead to frustration due to the sheer improbability of obtaining
glucose values in the target range 100% of the time. Certain aspects of T1D management increase
the risk of developing eating disorders, particularly as emphasis is often placed on food selection and
portion size. Compared to those without T1D, people living with T1D are at an increased risk of
developing eating disorders [12,13,160,161] and other psychological disorders such as depression [162,163].
Weight management is a common motive for taking part in exercise [164]; however, carbohydrate
requirements to avoid hypoglycemia during exercise can be high [165], which can be discouraging from
a weight management point of view [8]. Of concern are previous reports that approximately 28% of
female and 7% of male adolescents with T1D skip meals in an attempt to manage their weight [166].
Adolescents who engage in disturbed eating behaviors have poorer metabolic control [167], and insulin
restriction is associated with increased risk of mortality [166]. Because of the risks, the latest ADA guidelines
recommend that psychosocial care should be integrated as part of a patient-centered approach [86].
Future guidelines and strategies to improve glycemic control in the context of exercise should take these
aspects into account, enabling people with T1D to have a positive attitude towards exercise, while allowing
for a balanced approach towards nutrition and a healthy body image in this context.

8. Taking an Individualized Approach to Carbohydrate Intake

Practical use of the recommendations derived from the guidelines [9,10] can be difficult to follow
due to the sheer number of inter- and intra-individual factors influencing glycemia during and after
exercise [168]. Decision making can also be complicated because symptoms of hypoglycemia are
often masked during exercise, which increases the risk of hypoglycemia if exercise continues [120].
The use of a customizable algorithm has been proposed [169,170] to help estimate carbohydrate
requirements, and to improve the range of time and ease the burden of decision making. One example
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is the ECRES algorithm (Exercise Carbohydrate Requirement Estimating Software), which takes into
account information regarding the individual’s usual insulin therapy (type, dose and schedule), usual
carbohydrate intake and fitness level [171]. Based on this, the algorithm estimates plasma insulin
concentration profile throughout the day using standard pharmacokinetic profiles, as well as taking
into account insulin sensitivity. During the exercise bout, the algorithm uses expected average heart
rate, exercise duration and actual glycemia to estimate carbohydrate requirements. Advances in
artificial pancreas systems that link CGM to the user’s insulin pump to automatically adjust insulin
levels, and therefore carbohydrate requirements, through intelligent algorithms, have the potential
to ease the burden of exercise management in T1D. Integration of such hybrid-/closed-loop systems
with automated exercise detection tools (e.g., heart rate monitors and/or activity monitors) may help to
further reduce user input [172].

9. Conclusions

Physical exercise is a complex metabolic stressor with many intra- and inter-individual variables
influencing glycemic response. Therefore, for the individual with T1D, carbohydrate consumption
to prevent hypoglycemia and/or to fuel the exercise bout is a challenge encompassing a variety of
aspects (i.e., the amount of carbohydrates, the timing in relation to an exercise bout, as well as the
type of carbohydrate consumed). The strategies used to manage glycemia during exercise require
knowledge of pre-exercise blood glucose concentration, the amount of “insulin on board”, and the
expected blood glucose response, depending on the type and volume of the planned exercise bout.
To complicate matters, the type of carbohydrate (e.g., the glycemic index) and context in which it is
consumed (e.g., with other macronutrients such as fat or protein) can have an additional impact on
the glycemic response and, therefore, insulin requirements, in the individual with T1D. Although the
primary motivator for carbohydrate consumption before, during and after exercise for people with
T1D is in the avoidance of hypoglycemia, fuel provision for optimal performance, weight management
and long-term glycemic control need to be considered. Additionally, from a psychological point of
view, it is important that a level of food enjoyment is maintained, to limit the risk of eating disorders or
food fixation, of which people with T1D are at greater risk than the general population [12,13].
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